Published in

Cold Spring Harbor Laboratory Press, Learning & Memory, 1(11), p. 108-115, 2004

DOI: 10.1101/lm.69804

Links

Tools

Export citation

Search in Google Scholar

Galantamine Facilitates Acquisition of Hippocampus-Dependent Trace Eyeblink Conditioning in Aged Rabbits

Journal article published in 2004 by M. Matthew Oh ORCID, Aldis P. Weible, Grace Lee, John F. Disterhoft
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Cholinergic systems are critical to the neural mechanisms mediating learning. Reduced nicotinic cholinergic receptor (nAChR) binding is a hallmark of normal aging. These reductions are markedly more severe in some dementias, such as Alzheimer's disease. Pharmacological central nervous system therapies are a means to ameliorate the cognitive deficits associated with normal aging and aging-related dementias. Trace eyeblink conditioning (EBC), a hippocampus- and forebrain-dependent learning paradigm, is impaired in both aged rabbits and aged humans, attributable in part to cholinergic dysfunction. In the present study, we examined the effects of galantamine (3 mg/kg), a cholinesterase inhibitor and nAChR allosteric potentiating ligand, on the acquisition of trace EBC in aged (30–33 months) and young (2–3 months) female rabbits. Trace EBC involves the association of a conditioned stimulus (CS) with an unconditioned stimulus (US), separated by a stimulus-free trace interval. Repeated CS–US pairings results in the development of the conditioned eyeblink response (CR) prior to US onset. Aged rabbits receiving daily injections of galantamine (Aged/Gal) exhibited significant improvements compared with age-matched controls in trials to eight CRs in 10 trial block criterion (P = 0.0402) as well as performance across 20 d of training [F(1,21) = 5.114, P = 0.0345]. Mean onset and peak latency of CRs exhibited by Aged/Gal rabbits also differed significantly [F(1,21) = 6.120/6.582, P = 0.0220/0.0180, respectively] compared with age-matched controls, resembling more closely CR timing of young drug and control rabbits. Galantamine did not improve acquisition rates in young rabbits compared with age-matched controls. These data indicate that by enhancing nicotinic and muscarinic transmission, galantamine is effective in offsetting the learning deficits associated with decreased cholinergic transmission in the aging brain.