Society of Photo-optical Instrumentation Engineers, Optical Engineering, 11(49), p. 111124
DOI: 10.1117/1.3498782
Full text: Download
We review our recent results in development of high-precision laser spectroscopic instrumentation using midinfrared quantum cascade lasers (QCLs). Some of these instruments have been directed at measurements of atmospheric trace gases where a fractional precision of 10−3 or better of ambient concentration may be required. Such high precision is needed in measurements of fluxes of stable atmospheric gases and measurements of isotopic ratios. Instruments that are based on thermoelectrically cooled midinfrared QCLs and thermoelectrically cooled detectors have been demonstrated that meet the requirements of high-precision atmospheric measurements, without the need for cryogens. We also describe the design of and results from a new dual QCL instrument with a 200-m path-length absorption cell. This instrument has demonstrated 1-s noise of 32 ppt for formaldehyde (HCHO) and 9 ppt for carbonyl sulfide (OCS).