Dissemin is shutting down on January 1st, 2025

Published in

American Society of Mechanical Engineers, Journal of Applied Mechanics, 4(77), p. 041017

DOI: 10.1115/1.4000928

Links

Tools

Export citation

Search in Google Scholar

Geometrical Anisotropy in Biphase Particle Reinforced Composites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Particle shape plays a crucial role in the design of novel reinforced composites. We introduce the notion of a geometrical anisotropy index A to characterize the particle shape and establish its relationship with the effective elastic constants of biphase composite materials. Our analysis identifies three distinct regions of A: (i) By using ovoidal particles with small A, the effective stiffness scales linearly with A for a given volume fraction α; (ii) for intermediate values of A, the use of prolate particles yield better elastic properties; and (iii) for large A, the use of oblate particles result in higher effective stiffness. Interestingly, the transition from (ii) to (iii) occurs at a critical anisotropy Acr and is independent of α.