Published in

American Society of Mechanical Engineers, Journal of Offshore Mechanics and Arctic Engineering, 3(126), p. 258-264, 2004

DOI: 10.1115/1.1782641

21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 2

DOI: 10.1115/omae2002-28427

Links

Tools

Export citation

Search in Google Scholar

Optimality and Acceptance Criteria in Offshore Design

Journal article published in 2002 by Oliver Ku¨bler, Oliver Kübler, Michael Havbro Faber ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The optimal design of offshore structures is formulated as a decision theoretical problem. The objective is to maximize the expected net present value of the life cycle benefit. The general optimization problem is simplified by taking into account the cost impacts of a possible reconstruction of the structure. The analytical solution to this problem has been derived for the case, where failure events follow a stationary Poisson process. The life cycle benefit is formulated in terms of the production profile, the design and construction costs, failure costs and reconstruction costs. In order to assess the effect of potential loss of lives, the costs of fatalities are included applying the concept of the Implied Costs of Averting a Fatality ICAF. The suggested approach to optimal design, which can be applied for any type of offshore structure, is exemplified considering the special case of steel structures. Here, it is standard to represent the ultimate structural capacity in terms of the Reserve Strength Ratio RSR. For the purpose of illustration, the relation between material usage and RSR, which is valid for monopod structures, is applied. Optimal RSR’s and corresponding annual failure rates are assessed for both manned and unmanned structures covering a wide range of different realistic ratios between the potential revenues and costs for construction, failure and reconstruction.