Published in

Nature Research, Nature Materials, 4(10), p. 316-323, 2011

DOI: 10.1038/nmat2971

Links

Tools

Export citation

Search in Google Scholar

Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Development of advanced surgical tools for minimally invasive procedures represents an activity of central importance to improvements in human health. A key materials challenge is in the realization of bio-compatible interfaces between the classes of semiconductor and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on biocompatible materials and devices that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide multimodal functionality suitable for clinical use. We present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radio frequency (RF) electrodes for controlled, local ablation of tissue. These components connect together in arrayed layouts designed to decouple their operation from large strain deformations associated with deployment and repeated inflation/deflation. Use of such ‘instrumented’ balloon catheter devices in live animal models and in vitro tests illustrates their operation in cardiac ablation therapy. These concepts have the potential for application in surgical systems of the future, not only those based on catheters but also on other platforms, such as surgical gloves.