Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS Computational Biology, 9(8), p. e1002673, 2012

DOI: 10.1371/journal.pcbi.1002673

Links

Tools

Export citation

Search in Google Scholar

Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Social contact patterns among individuals encode the transmission route of infectious diseases and are a key ingredient in the realistic characterization and modeling of epidemics. Unfortunately, the gathering of high quality experimental data on contact patterns in human populations is a very difficult task even at the coarse level of mixing patterns among age groups. Here we propose an alternative route to the estimation of mixing patterns that relies on the construction of virtual populations parametrized with highly detailed census and demographic data. We present the modeling of the population of 26 European countries and the generation of the corresponding synthetic contact matrices among the population age groups. The method is validated by a detailed comparison with the matrices obtained in six European countries by the most extensive survey study on mixing patterns. The methodology presented here allows a large scale comparison of mixing patterns in Europe, highlighting general common features as well as country-specific differences. We find clear relations between epidemiologically relevant quantities (reproduction number and attack rate) and socio-demographic characteristics of the populations, such as the average age of the population and the duration of primary school cycle. This study provides a numerical approach for the generation of human mixing patterns that can be used to improve the accuracy of mathematical models in the absence of specific experimental data.