Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 1(109), p. 315-320, 2011

DOI: 10.1073/pnas.1114673109

Links

Tools

Export citation

Search in Google Scholar

Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis

Journal article published in 2011 by Li Yang, Gang Wu, R. Scott Poethig ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plant microRNAs (miRNAs) typically mediate RNA cleavage, but examples of miRNA-mediated translational repression have also been reported. However, the functional significance of this latter process is unknown. We identified SUO in a screen for Arabidopsis mutations that increase the accumulation of the miR156-regulated gene SPL3 . suo has a loss-of-function phenotype characteristic of plants with reduced Argonaute (AGO)1 activity. An analysis of RNA and protein levels in suo mutants demonstrated that this phenotype is a consequence of a defect in miRNA-mediated translational repression; the effect of suo on vegetative phase change is attributable to a reduction in miR156/miR157 activity. SUO encodes a large protein with N-terminal bromo-adjacent homology (BAH) and transcription elongation factor S-II (TFS2N) domains and two C-terminal GW (glycine and tryptophan) repeats. SUO is present in the nucleus, and colocalizes with the processing-body component DCP1 in the cytoplasm. Our results reveal that SOU is a component of the miRNA pathway in Arabidopsis and demonstrate that translational repression is a functionally important aspect of miRNA activity in plants.