Published in

Biosystems & Biorobotics, p. 765-773

DOI: 10.1007/978-3-319-08072-7_106

Links

Tools

Export citation

Search in Google Scholar

Functionality of the contralateral biceps femoris reflex response during human walking

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In this study we examined the functionality of the contralateral biceps femoris (cBF) reflex response following ipsilateral knee extension joint rotations during the late stance phase of the gait cycle [1]. Stevenson et al. [1] proposed that the cBF reflex acts to slow the forward progression of the body in order to maintain dynamic equilibrium during walking. Therefore, we hypothesized that if we suddenly slowed the treadmill participants were walking on, the cBF reflex would be inhibited because the necessity to break the forward progression of the body would be decreased. Conversely, if we suddenly sped up the treadmill, the breaking requirement would be greater and the cBF reflex would be larger. We found this to be the case when the treadmill velocity was suddenly changed either 100 ms or 50 ms prior to the onset of the ipsilateral knee perturbations. The cBF reflex was unchanged when the treadmill velocity was altered concurrently or 50 ms after knee perturbation onset. These results, together with the finding that the cBF reflex response is under some cortical control [1], strongly suggest a functional role for the cBF reflex during walking that is adaptable to the environmental situation.