Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Nephrology Dialysis Transplantation, 12(27), p. 4368-4377, 2012

DOI: 10.1093/ndt/gfs261

Links

Tools

Export citation

Search in Google Scholar

Specific impairment of proximal tubular cell proliferation by a monoclonal   light chain responsible for Fanconi syndrome

Journal article published in 2012 by C. El Hamel, J.-C. Aldigier, C. Oblet, B. Laffleur, F. Bridoux, M. Cogne ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Fanconi syndrome (FS) is a rare renal disorder featuring proximal tubule dysfunction that may occur following tubular reabsorption of a monoclonal light chain (LC), in patients with multiple myeloma. FS may precede the recognition of multiple myeloma by several years. In most cases, crystalline inclusions of monoclonal κ LCs are observed within the lysosomes of proximal tubular cells (PTCs) and probably participate in their functional alteration. Methods To investigate the mechanism implicated in proximal tubule dysfunction, we compared the effects of κ LC-CHEB obtained from a patient with myeloma-associated FS to those of control κ LC-BON obtained from a patient without evidence of FS, on the viability and proliferation of two different PTC lines. Results Our data suggest that the tubular atrophy in myeloma-associated FS does not result from increased apoptosis of PTCs, but from their impaired capacity to proliferate and renew. Indeed, in vitro incubation of cultured PTCs with physiological amounts of the nephrotoxic κ LC-CHEB was sufficient to cause a depression in DNA synthesis and in cell proliferation. This effect was observed neither with control κ LC-BON nor in the absence of κ LC. Conclusions The reduced turnover of PTCs may affect tubular repair and regeneration. In addition, the reduced proliferation of myeloma cells producing the same monoclonal κ LC might explain the frequent association of FS with smoldering multiple myeloma.