Published in

International Union of Crystallography, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 7(66), p. 834-837, 2010

DOI: 10.1107/s1744309110018804

Links

Tools

Export citation

Search in Google Scholar

Purification, crystallization and preliminary crystallographic studies of Lys48-linked polyubiquitin chains

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Post-translational modification of proteins by covalent attachment of ubiquitin regulates diverse cellular events. A Lys48-linked polyubiquitin chain is formed via an isopeptide bond between Lys48 and the C-terminal Gly76 of different ubiquitin molecules. The chain is attached to a lysine residue of a substrate protein, which leads to proteolytic degradation of the protein by the 26S proteasome. In order to reveal the chain-length-dependent higher order structures of polyubiquitin chains, Lys48-linked polyubiquitin chains were synthesized enzymatically on a large scale and the chains were separated according to chain length by cation-exchange column chromatography. Subsequently, crystallization screening was performed using the hanging-drop vapour-diffusion method, from which crystals of tetraubiquitin, hexaubiquitin and octaubiquitin chains were obtained. The crystals of the tetraubiquitin and hexaubiquitin chains diffracted to 1.6 and 1.8 A resolution, respectively. The tetraubiquitin crystals belonged to space group C222(1), with unit-cell parameters a = 58.795, b = 76.966, c = 135.145 A. The hexaubiquitin crystals belonged to space group P2(1), with unit-cell parameters a = 51.248, b = 102.668, c = 51.161 A. Structural analysis by molecular replacement is in progress.