Published in

Wiley, The Journal of Physiology, 3(515), p. 685-694, 1999

DOI: 10.1111/j.1469-7793.1999.685ab.x

Links

Tools

Export citation

Search in Google Scholar

Differential plasma membrane targeting of voltage-dependent calcium channel subunits expressed in a polarized epithelial cell line

Journal article published in 1999 by Nicola L. Brice, Annette C. Dolphin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

1. Voltage-dependent calcium channels (VDCCs) show a highly non-uniform distribution in many cell types, including neurons and other polarized secretory cells. We have examined whether this can be mimicked in a polarized epithelial cell line (Madin-Darby canine kidney), which has been used extensively to study the targeting of proteins. 2. We expressed the VDCC alpha1A, alpha1B or alpha1C subunits either alone or in combination with accessory subunits alpha2-delta and the different beta subunits, and examined their localization immunocytochemically. An alpha1 subunit was only targeted to the plasma membrane if co-expressed with the accessory subunits. 3. The combination alpha1C/alpha2-delta and all beta subunits was always localized predominantly to the basolateral membrane. It has been suggested that this is equivalent to somatodendritic targeting in neurons. 4. In contrast, the alpha1B subunit was expressed at the apical membrane with all the accessory subunit combinations, by 24 h after microinjection. This membrane destination shows some parallels with axonal targeting in neurons. 5. The alpha1A subunit was consistently observed at the apical membrane in the combinations alpha1A/alpha2-delta/beta1b or beta4. In contrast, when co-expressed with alpha2-delta/beta2a, alpha1A was clearly targeted to the basolateral membrane. 6. In conclusion, the VDCC alpha1 subunit appears to be the primary determinant for targeting the VDCC complex, but the beta subunit can modify this destination, particularly for alpha1A.