Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Physical Biology, 1(8), p. 015014, 2011

DOI: 10.1088/1478-3975/8/1/015014

Links

Tools

Export citation

Search in Google Scholar

Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently-labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.