Published in

Taylor and Francis Group, Environmental Technology, 24(34), p. 3177-3182

DOI: 10.1080/09593330.2013.808243

Links

Tools

Export citation

Search in Google Scholar

Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater

Journal article published in 2013 by Yr R. Wang, Daniel C. W. Tsang ORCID, William E. Olds, Paul A. Weber
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg0.577 L0.423 g-1 and 16.9 mg0.478 L0.522 g-1 for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg-1 at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application. ; Department of Civil and Environmental Engineering