Published in

American Chemical Society, Nano Letters, 9(12), p. 4490-4494, 2012

DOI: 10.1021/nl301497j

Links

Tools

Export citation

Search in Google Scholar

Electrostatic Spin Control in InAs/InP Nanowire Quantum Dots

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Very robust voltage-controlled spin transitions in few-electron quantum dots are demonstrated. Two lateral-gate electrodes patterned on opposite sides of an InAs/InP nanowire are used to apply a transverse electric field and tune orbital energy separation down to level-pair degeneracy. Transport measurements in this regime allow us to demonstrate the breakdown of the standard alternate up/down spin filling scheme and unambiguously show singlet-triplet spin transitions. The strong confinement of the present devices leads to a large energy gain for the observed anomalous spin configurations that exceeds 4 meV. As a consequence, this behavior is well visible even at temperatures exceeding T = 20 K. RI Pitanti, Alessandro/K-5547-2012