Published in

Public Library of Science, PLoS ONE, 7(9), p. e101288, 2014

DOI: 10.1371/journal.pone.0101288

Links

Tools

Export citation

Search in Google Scholar

Acute Kidney Injury Urinary Biomarker Time-Courses

Journal article published in 2014 by John W. Pickering ORCID, Zoltán H. Endre
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Factors which modify the excretion profiles of acute kidney injury biomarkers are difficult to measure. To facilitate biomarker choice and interpretation we modelled key modifying factors: extent of hyperfiltration or reduced glomerular filtration rate, structural damage, and reduced nephron number. The time-courses of pre-formed, induced (upregulated), and filtered biomarker concentrations were modelled in single nephrons, then combined to construct three multiple-nephron models: a healthy kidney with normal nephron number, a non-diabetic hyperfiltering kidney with reduced nephron number but maintained total glomerular filtration rate, and a chronic kidney disease kidney with reduced nephron number and reduced glomerular filtration rate. Time-courses for each model were derived for acute kidney injury scenarios of structural damage and/or reduced nephron number. The model predicted that pre-formed biomarkers would respond quickest to injury with a brief period of elevation, which would be easily missed in clinical scenarios. Induced biomarker time-courses would be influenced by biomarker-specific physiology and the balance between insult severity (which increased single nephron excretion), the number of remaining nephrons (reduced total excretion), and the extent of glomerular filtration rate reduction (increased concentration). Filtered biomarkers have the longest time-course because plasma levels increased following glomerular filtration rate decrease. Peak concentration and profile depended on the extent of damage to the reabsorption mechanism and recovery rate. Rapid recovery may be detected through a rapid reduction in urinary concentration. For all biomarkers, impaired hyperfiltration substantially increased concentration, especially with chronic kidney disease. For clinical validation of these model-derived predictions the clinical biomarker of choice will depend on timing in relation to renal insult and interpretation will require the pre-insult nephron number (renal mass) and detection of hyperfiltration.