Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 47(116), p. 13878-13888, 2012

DOI: 10.1021/jp3052714

Links

Tools

Export citation

Search in Google Scholar

Unravelling the Structure of Protic Ionic Liquids with Theoretical and Experimental Methods: Ethyl-, Propyl- and Butylammonium Nitrate Explored by Raman Spectroscopy and DFT Calculations

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present an analysis of gas-phase structures of small clusters of n-alkylammonium nitrates (ethyl, propyl, and butyl) together with vibrational Raman spectroscopy of their respective liquid phases. The assignment and interpretation of the resonant frequencies have been performed by comparison with high-quality ab initio (DFT) computations. The theoretical spectra are in excellent agreement with the measured ones and allow the interpretation and assignment of almost all the spectral features. A careful analysis of the vibrational frequencies and of the electronic structure of the compounds has provided additional information on various structural features and on the rather complex hydrogen bonding network that exists in such compounds. A geometric structure of the short-range local arrangement in the bulk phases is also proposed. © 2012 American Chemical Society.