Published in

American Chemical Society, Journal of Medicinal Chemistry, 3(56), p. 1052-1063, 2013

DOI: 10.1021/jm301509n

Links

Tools

Export citation

Search in Google Scholar

Synthesis, Characterization, and Photoinduced Antibacterial Activity of Porphyrin-Type Photosensitizers Conjugated to the Antimicrobial Peptide Apidaecin 1b

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Antimicrobial photodynamic therapy (aPDT) is an emerging treatment for bacterial infections that is becoming increasingly more attractive because of its effectiveness against multi-antibiotic-resistant strains and unlikelihood of inducing bacterial resistance. Among the strategies to enhance the efficacy of PDT against Gram-negative bacteria, the binding to a cationic antimicrobial peptide offers the attractive prospect for improving both the water solubilty and the localization of the photoactive drug in bacteria. In this work we have compared a number of free and apidaecin-conjugated photosensitizers (PSs) differing in structure and charge. Our results indicate that the conjugation of per se ineffective highly hydrophobic PSs to a cationic peptide produces a photosensitizing agent effective against Gram-negative bacteria. Apidaecin cannot improve the phototoxic activity of cationic PSs, which mainly depends on a very high yield of singlet oxygen production in the surroundings of the bacterial outer membrane. Apidaecin−PS conjugates appear most promising for treatment protocols requiring repeated washing after sensitizer delivery.