Published in

American Chemical Society, Inorganic Chemistry, 5(52), p. 2393-2403, 2013

DOI: 10.1021/ic302100x

Links

Tools

Export citation

Search in Google Scholar

NMR Investigation of the Spontaneous Thermal- and/or Photoinduced Reduction of trans Dihydroxido Pt(IV) Derivatives

Journal article published in 2013 by Emanuele Petruzzella, Nicola Margiotta ORCID, Mauro Ravera, Giovanni Natile
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The initial aim of the present work was the synthesis of the axial disuccinato Pt(IV) derivative of [PtCl2(cis-1,4-DACH)] (Kiteplatin, 1 in Figure 1) (DACH = diaminocyclohexane), which contains an isomeric form of the diamine ligand present in oxaliplatin (i.e., 1R,2R-DACH). The interest in this compound stems from its activity on several cisplatin and oxaliplatin-resistant cell lines. Oxidation of 1 with hydrogen peroxide affords cis,trans,cis- [PtCl2(OH)2(cis-1,4-DACH)] (2) which was treated with succinic anhydride in suitable solvents. To our surprise, in dimethylformamide (DMF) (50−70 °C or under light irradiation) or in dimethylsulfoxide (DMSO) (under light irradiation) the formation of the succinato complex cis,trans,cis-[PtCl2{OC(O)CH2CH2C(O)-OH}2(cis-1,4-DACH)] (3) was accompanied by reduction to 1. It was found that solvolysis of 2 and formation of a μ-oxo dinuclear species (5) is the key step. The dinuclear species can then undergo reduction to a 1:1 mixture of 1 and 2 with concomitant elimination of oxygen (1/2 O2 in the form of H2O2). The whole process is fostered by heat and/or light, which could favor solvolysis of 2 as well as decomposition of hydrogen peroxide to water and oxygen so preventing the reoxidation of 1 to 2. Because of its peculiar behavior, compound 5 could be exploited also for the development of a technology for water splitting.