Published in

American Chemical Society, Biomacromolecules, 1(14), p. 200-206, 2012

DOI: 10.1021/bm301629f

Links

Tools

Export citation

Search in Google Scholar

Supramolecular Hydrogels with Reverse Thermal Gelation Properties from (Oligo)tyrosine Containing Block Copolymers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Novel block copolymers comprising poly(ethylene glycol) (PEG) and an oligo(tyrosine) block were synthesized in different compositions by N-carboxyanhydride (NCA) polymerization. It was shown that PEG2000-Tyr6 undergoes thermoresponsive hydrogelation at a low concentration range of 0.25–3.0 wt % within a temperature range of 25–50 °C. Cryogenic transmission electron microscopy (Cryo-TEM) revealed a continuous network of fibers throughout the hydrogel sample, even at concentrations as low as 0.25 wt %. Circular dichroism (CD) results suggest that better packing of the β-sheet tyrosine block at increasing temperature induces the reverse thermogelation. A preliminary assessment of the potential of the hydrogel for in vitro application confirmed the hydrogel is not cytotoxic, is biodegradable, and produced a sustained release of a small-molecule drug.