Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 12(7), p. e50807, 2012

DOI: 10.1371/journal.pone.0050807

Links

Tools

Export citation

Search in Google Scholar

Population Estimation and Trappability of the European Badger (Meles meles): Implications for Tuberculosis Management.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Estimates of population size and trappability inform vaccine efficacy modelling and are required for adaptive management during prolonged wildlife vaccination campaigns. We present an analysis of mark-recapture data from a badger vaccine (Bacille Calmette–Gue´ rin) study in Ireland. This study is the largest scale (755 km2) mark-recapture study ever undertaken with this species. The study area was divided into three approximately equal–sized zones, each with similar survey and capture effort. A mean badger population size of 671 (SD: 76) was estimated using a closed-subpopulation model (CSpM) based on data from capturing sessions of the entire area and was consistent with a separate multiplicative model. Minimum number alive estimates calculated from the same data were on average 49–51% smaller than the CSpM estimates, but these are considered severely negatively biased when trappability is low. Population densities derived from the CSpM estimates were 0.82–1.06 badgers km22, and broadly consistent with previous reports for an adjacent area. Mean trappability was estimated to be 34–35% per session across the population. By the fifth capture session, 79% of the adult badgers caught had been marked previously. Multivariable modelling suggested significant differences in badger trappability depending on zone, season and age-class. There were more putatively trap-wary badgers identified in the population than trap-happy badgers, but wariness was not related to individual’s sex, zone or season of capture. Live-trapping efficacy can vary significantly amongst sites, seasons, age, or personality, hence monitoring of trappability is recommended as part of an adaptive management regime during large–scale wildlife vaccination programs to counter biases and to improve efficiencies. ; peer-reviewed ; Department of Agriculture, Food and the Marine ; Teagasc Walsh Fellowship Programme