Published in

Springer Verlag, Journal of Solid State Electrochemistry, 9(16), p. 2861-2866

DOI: 10.1007/s10008-012-1714-7

Links

Tools

Export citation

Search in Google Scholar

Electrochemical synthesis of nano-cobalt hexacyanoferrate at a sol–gel-coated electrode templated with β-cyclodextrin

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The paper describes the time-dependent evolution of the electrochemical deposition of cobalt hexacyanoferrate (CoHCFe) on graphite foil electrode modified with electrochemically formed sol–gel film doped with β-cyclodextrin to impart porosity. With short-time electrodeposition, cyclic voltammetry (CV) shows a single redox couple typical of nano-sized clusters of CoHCFe, while at longer deposition times the CV’s shape evolves to the classical form of a bulk compound in which there are present two redox couples. The electrode modified with β-cyclodextrin (CD) included in the sol–gel film has an active surface that corresponds to pores created by CD stacks normal to the surface. Hence, the electrochemical formation of CoHCFe starts in these conductive pores; only at long deposition times do the clusters overlap to form moieties with the voltammetric characteristics of bulk CoHCFe.