Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Archives of Environmental Contamination and Toxicology, 2(64), p. 263-272

DOI: 10.1007/s00244-012-9823-y

Links

Tools

Export citation

Search in Google Scholar

Humic Substances Increase Survival of Freshwater Shrimp Caridina sp. D to Acid Mine Drainage

Journal article published in 2012 by Aleicia Holland ORCID, Leo J. Duivenvoorden, Susan H. W. Kinnear
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments.