Published in

Public Library of Science, PLoS ONE, 7(8), p. e65485, 2013

DOI: 10.1371/journal.pone.0065485

Links

Tools

Export citation

Search in Google Scholar

Integration of Lyoplate Based Flow Cytometry and Computational Analysis for Standardized Immunological Biomarker Discovery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Discovery of novel immune biomarkers for monitoring of disease prognosis and response to therapy in immune-mediated inflammatory diseases is an important unmet clinical need. Here, we establish a novel framework for immunological biomarker discovery, comparing a conventional (liquid) flow cytometry platform (CFP) and a unique lyoplate-based flow cytometry platform (LFP) in combination with advanced computational data analysis. We demonstrate that LFP had higher sensitivity compared to CFP, with increased detection of cytokines (IFN-γ and IL-10) and activation markers (Foxp3 and CD25). Fluorescent intensity of cells stained with lyophilized antibodies was increased compared to cells stained with liquid antibodies. LFP, using a plate loader, allowed medium-throughput processing of samples with comparable intra- and inter-assay variability between platforms. Automated computational analysis identified novel immunophenotypes that were not detected with manual analysis. Our results establish a new flow cytometry platform for standardized and rapid immunological biomarker discovery with wide application to immune-mediated diseases.