Published in

Elsevier, Journal of Computational Physics, 20(228), p. 7850-7861

DOI: 10.1016/j.jcp.2009.07.024

Links

Tools

Export citation

Search in Google Scholar

An Improved Algorithm and Its Parallel Implementation for Solving a General Blood-Tissue Transport and Metabolism Model

Journal article published in 2009 by Dexuan Xie, Ranjan K. Dash, Daniel A. Beard ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fast algorithms for simulating mathematical models of coupled blood-tissue transport and metabolism are critical for the analysis of data on transport and reaction in tissues. Here, by combining the method of characteristics with the standard grid discretization technique, a novel algorithm is introduced for solving a general blood-tissue transport and metabolism model governed by a large system of one-dimensional semilinear first order partial differential equations. The key part of the algorithm is to approximate the model as a group of independent ordinary differential equation (ODE) systems such that each ODE system has the same size as the model and can be integrated independently. Thus the method can be easily implemented in parallel on a large scale multiprocessor computer. The accuracy of the algorithm is demonstrated for solving a simple blood-tissue exchange model introduced by Sangren and Sheppard (Bull. Math. Biophys. 15:387–394, 1953), which has an analytical solution. Numerical experiments made on a distributed-memory parallel computer (an HP Linux cluster) and a shared-memory parallel computer (a SGI Origin 2000) demonstrate the parallel efficiency of the algorithm.