Published in

American Society for Microbiology, Journal of Virology, 20(78), p. 11321-11326, 2004

DOI: 10.1128/jvi.78.20.11321-11326.2004

Links

Tools

Export citation

Search in Google Scholar

Protective Efficacy of a DNA Influenza Virus Vaccine Is Markedly Increased by the Coadministration of a Schiff Base-Forming Drug

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Effective vaccination against heterologous influenza virus infection remains elusive. Immunization with plasmid DNA (pDNA) expressing conserved genes from influenza virus is a promising approach to achieve cross-variant protection. However, despite having been described for more than a decade, pDNA vaccination still requires further optimization to be applied clinically as a standard vaccination approach. We have recently described a simple and efficient approach to enhance pDNA immunization, based on the use of tucaresol, a Schiff base-forming drug. In this report we have tested the ability of this drug to increase the protection conferred by pDNA vaccination against influenza virus infection. Our results demonstrate that a significant protection was achieved in two strains of mice by using the combination of pDNA and tucaresol. This protection was associated with an elevated humoral and cellular response and a switch in the type of the T helper cell (Th) immune response from type 2 to type 1. This vaccine combination represents a promising strategy for designing a clinical study for the protection from influenza and similar infections.