Published in

World Scientific Publishing, Journal of Theoretical and Computational Chemistry, 03(13), p. 1440003

DOI: 10.1142/s0219633614400033

Links

Tools

Export citation

Search in Google Scholar

Distinct mechanisms of a phosphotyrosyl peptide binding to two SH2 domains

Journal article published in 2014 by Xiaodong Pang, Huan-Xiang Zhou ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein phosphorylation is a very common post-translational modification, catalyzed by kinases, for signaling and regulation. Phosphotyrosines frequently target SH2 domains. The spleen tyrosine kinase (Syk) is critical for tyrosine phosphorylation of multiple proteins and for regulation of important pathways. Phosphorylation of both Y342 and Y346 in Syk linker B is required for optimal signaling. The SH2 domains of Vav1 and PLC-γ both bind this doubly phosphorylated motif. Here we used a recently developed method to calculate the effects of Y342 and Y346 phosphorylation on the rate constants of a peptide from Syk linker B binding to the SH2 domains of Vav1 and PLC-γ. The predicted effects agree well with experimental observations. Moreover, we found that the same doubly phosphorylated peptide binds the two SH2 domains via distinct mechanism, with apparent rigid docking for Vav1 SH2 and dock-and-coalesce for PLC-γ SH2.