Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 3(71), 2005

DOI: 10.1103/physreve.71.036706

Links

Tools

Export citation

Search in Google Scholar

Generalized directed loop method for quantum Monte Carlo simulations

Journal article published in 2005 by Fabien Alet, Stefan Wessel, Matthias Troyer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Efficient quantum Monte Carlo update schemes called directed loops have recently been proposed, which improve the efficiency of simulations of quantum lattice models. We propose to generalize the detailed balance equations at the local level during the loop construction by accounting for the matrix elements of the operators associated with open world-line segments. Using linear programming techniques to solve the generalized equations, we look for optimal construction schemes for directed loops. This also allows for an extension of the directed loop scheme to general lattice models, such as high-spin or bosonic models. The resulting algorithms are bounce free in larger regions of parameter space than the original directed loop algorithm. The generalized directed loop method is applied to the magnetization process of spin chains in order to compare its efficiency to that of previous directed loop schemes. In contrast to general expectations, we find that minimizing bounces alone does not always lead to more efficient algorithms in terms of autocorrelations of physical observables, because of the nonuniqueness of the bounce-free solutions. We therefore propose different general strategies to further minimize autocorrelations, which can be used as supplementary requirements in any directed loop scheme. We show by calculating autocorrelation times for different observables that such strategies indeed lead to improved efficiency; however, we find that the optimal strategy depends not only on the model parameters but also on the observable of interest.