Published in

American Physical Society, Physical Review A, 4(74)

DOI: 10.1103/physreva.74.043602

Links

Tools

Export citation

Search in Google Scholar

Ramping fermions in optical lattices across a Feshbach resonance

Journal article published in 2006 by Hg Katzgraber, Aniello Esposito, Matthias Troyer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We study the properties of ultracold Fermi gases in a three-dimensional optical lattice when crossing a Feshbach resonance. By using a zero-temperature formalism, we show that three-body processes are enhanced in a lattice system in comparison to the continuum case. This poses one possible explanation for the short molecule lifetimes found when decreasing the magnetic field across a Feshbach resonance. Effects of finite temperatures on the molecule formation rates are also discussed by computing the fraction of double-occupied sites. Our results show that current experiments are performed at temperatures considerably higher than expected: lower temperatures are required for fermionic systems to be used to simulate quantum Hamiltonians. In addition, by relating the double occupancy of the lattice to the temperature, we provide a means for thermometry in fermionic lattice systems, previously not accessible experimentally. The effects of ramping a filled lowest band across a Feshbach resonance when increasing the magnetic field are also discussed: fermions are lifted into higher bands due to entanglement of Bloch states, in good agreement with recent experiments. ; Comment: 9 pages, 7 figures