Published in

Trans Tech Publications, Key Engineering Materials, (672), p. 47-59, 2016

DOI: 10.4028/www.scientific.net/kem.672.47

Links

Tools

Export citation

Search in Google Scholar

Single nanogranules preserve intracrystalline amorphicity in biominerals.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We revisit the ultrastructural features of different calcareous biominerals and identify remarkable similarities: taxonomically very distant species show a common nanogranular structure, even if different extracellular secretion patterns are employed or calcium carbonate polymorphs formed. By these analyses, we elucidate the locus of the small fraction of intracrystalline organic matrix revealing its intergranular character and localize the intracrystalline amorphous calcium carbonate moiety commonly found in mesocrystalline biominerals and provide a first explanation for the pathway by which it is preserved.