Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 48(109), p. 22860-22867, 2005

DOI: 10.1021/jp0511698

Links

Tools

Export citation

Search in Google Scholar

Electronic and atomistic structures of clean and reduced ceria surfaces.

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The atomistic and electronic structures of oxygen vacancies on the (111) and (110) surfaces of ceria are studied by means of periodic density functional calculations. The removal of a neutral surface oxygen atom leaves back two excess electrons that are shown to localize on two cerium ions neighboring the defect. The resulting change of valency of these Ce ions (Ce4+ --> Ce3+) originates from populating tightly bound Ce 4f states and is modeled by adding a Hubbard U term to the traditional energy functionals. The calculated atomistic and electronic structures of the defect-free and reduced surfaces are shown to agree with spectroscopic and microscopic measurements. The preferential defect segregation and the different chemical reactivity of the (111) and (110) surfaces are discussed in terms of energetics and features in the electronic structure.