Published in

American Astronomical Society, Astrophysical Journal, 1(818), p. 79, 2016

DOI: 10.3847/0004-637x/818/1/79

Links

Tools

Export citation

Search in Google Scholar

Optical and near-infrared observations of SN 2013dx associated with GRB 130702A

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present optical and near-infrared light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be $E_{γ,\mathrm{iso}} = 6.4_{-1.0}^{+1.3} \times 10^{50}$erg (1keV to 10MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed $g^{\prime}r^{\prime}i^{\prime}z^{\prime}$ light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves $∼20$% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined Type Ic supernovae, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of $∼$21,000 km s$^{-1}$. We construct a quasi-bolometric ($g^{\prime}r^{\prime}i^{\prime}z^{\prime}yJH$) light curve for SN 2013dx, and, together with the photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a $^{56}$Ni mass of $M_{\mathrm{Ni}} = 0.38± 0.01$M$_{⊙}$, an ejecta mass of $M_{\mathrm{ej}} = 3.0 ± 0.1$ M$_{⊙}$, and a kinetic energy of $E_{\mathrm{K}} = (8.2 ± 0.40) \times 10^{51}$erg (statistical uncertainties only), consistent with previous GRB-associated SNe. When considering the ensemble population of GRB-associated SNe, we find no correlation between the mass of synthesized $^{56}$Ni and high-energy properties, despite clear predictions from numerical simulations that $M_{\mathrm{Ni}}$ should correlate with the degree of asymmetry. On the other hand, $M_{\mathrm{Ni}}$ clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.