Published in

Elsevier, Journal of Structural Biology, 1(183), p. 86-94

DOI: 10.1016/j.jsb.2013.04.005

Links

Tools

Export citation

Search in Google Scholar

Membrane Curvature in Flaviviruses

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Coordinated interplay between membrane proteins and the lipid bilayer is required for such processes as transporter function and the entrance of enveloped viruses into host cells. In this study, three-dimensional cryo-electron microscopy density maps of mature and immature flaviviruses were analyzed to assess the curvature of the membrane leaflets and its relation to membrane-bound viral glycoproteins. The overall morphology of the viral membrane is determined by icosahedral scaffolding composed of envelope (E) and membrane (M) proteins through interaction of the proteins’ stem-anchor regions with the membrane. In localized regions, small membrane regions exhibit convex, concave, flat or saddle-shaped surfaces that are constrained by the specific protein organization within each membrane leaflet. These results suggest that the organization of membrane proteins in small enveloped viruses mediate the formation of membrane curvature.