Published in

BioMed Central, BMC Systems Biology, 1(3), 2009

DOI: 10.1186/1752-0509-3-17

Links

Tools

Export citation

Search in Google Scholar

Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3

Journal article published in 2009 by Donatella Cimini, Kiran R. Patil, Chiara Schiraldi ORCID, Jens B. Nielsen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Mitochondrial respiration is an important and widely conserved cellular function in eukaryotic cells. The succinate dehydrogenase complex (Sdhp) plays an important role in respiration as it connects the mitochondrial respiratory chain to the tricarboxylic acid (TCA) cycle where it catalyzes the oxidation of succinate to fumarate. Cellular response to the Sdhp dysfunction (i.e. impaired respiration) thus has important implications not only for biotechnological applications but also for understanding cellular physiology underlying metabolic diseases such as diabetes. We therefore explored the physiological and transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3, that codes for an essential subunit of the Sdhp. Results Although the Sdhp has no direct role in transcriptional regulation and the flux through the corresponding reaction under the studied conditions is very low, deletion of SDH3 resulted in significant changes in the expression of several genes involved in various cellular processes ranging from metabolism to the cell-cycle. By using various bioinformatics tools we explored the organization of these transcriptional changes in the metabolic and other cellular functional interaction networks. Conclusion Our results show that the transcriptional regulatory response resulting from the impaired respiratory function is linked to several different parts of the metabolism, including fatty acid and sterol metabolism.