Published in

Wiley, Annals of the New York Academy of Sciences, 1(1280), p. 11-14, 2013

DOI: 10.1111/nyas.12091

Links

Tools

Export citation

Search in Google Scholar

Role of SHIP1 in bone biology

Journal article published in 2013 by Sonia Iyer ORCID, Bryan S. Margulies, William G. Kerr
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The bone marrow milieu comprised of both hematopoietic and non-hematopoietic lineages has a unique structural organization. Bone undergoes continuous remodeling in the body throughout life. This dynamic process involves a balance between bone-forming osteoblasts (OBs) derived from multipotent mesenchymal stem cells (MSCs) and bone-resorbing osteoclasts (OCs) derived from hematopoietic stem cells (HSCs). Src homology 2-domain-containing inositol 5′-phosphatase 1 (SHIP1) regulates cellular processes such as proliferation, differentiation, and survival via the PI3K/AKT signaling pathway initiated at the plasma membrane. SHIP1-deficient mice also exhibit profound osteoporosis that has been proposed to result from hyperresorptive activity by OCs. We have previously observed that SHIP1 is expressed in primary OBs, which display defective development in SHIP1-deficient mice. These findings led us to question whether SHIP1 plays a functional role in osteolineage development from MSC in vivo, which contributes to the osteoporotic phenotype in germline SHIP1 knockout mice. In this short review, we discuss our current understanding of inositol phospholipid signaling downstream of SHIP1 in bone biology.