Published in

American Diabetes Association, Diabetes Care, 8(35), p. 1749-1756, 2012

DOI: 10.2337/dc11-1838

Links

Tools

Export citation

Search in Google Scholar

Circulating metabolite predictors of glycemia in middle-aged men and women

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE Metabolite predictors of deteriorating glucose tolerance may elucidate the pathogenesis of type 2 diabetes. We investigated associations of circulating metabolites from high-throughput profiling with fasting and postload glycemia cross-sectionally and prospectively on the population level. RESEARCH DESIGN AND METHODS Oral glucose tolerance was assessed in two Finnish, population-based studies consisting of 1,873 individuals (mean age 52 years, 58% women) and reexamined after 6.5 years for 618 individuals in one of the cohorts. Metabolites were quantified by nuclear magnetic resonance spectroscopy from fasting serum samples. Associations were studied by linear regression models adjusted for established risk factors. RESULTS Nineteen circulating metabolites, including amino acids, gluconeogenic substrates, and fatty acid measures, were cross-sectionally associated with fasting and/or postload glucose (P < 0.001). Among these metabolic intermediates, branched-chain amino acids, phenylalanine, and α1-acid glycoprotein were predictors of both fasting and 2-h glucose at 6.5-year follow-up (P < 0.05), whereas alanine, lactate, pyruvate, and tyrosine were uniquely associated with 6.5-year postload glucose (P = 0.003–0.04). None of the fatty acid measures were prospectively associated with glycemia. Changes in fatty acid concentrations were associated with changes in fasting and postload glycemia during follow-up; however, changes in branched-chain amino acids did not follow glucose dynamics, and gluconeogenic substrates only paralleled changes in fasting glucose. CONCLUSIONS Alterations in branched-chain and aromatic amino acid metabolism precede hyperglycemia in the general population. Further, alanine, lactate, and pyruvate were predictive of postchallenge glucose exclusively. These gluconeogenic precursors are potential markers of long-term impaired insulin sensitivity that may relate to attenuated glucose tolerance later in life.