Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Remote Sensing of Environment, 1(115), p. 86-96

DOI: 10.1016/j.rse.2010.08.007

Links

Tools

Export citation

Search in Google Scholar

Using ICESat's Geoscience Laser Altimeter System (GLAS) to assess large-scale forest disturbance caused by hurricane Katrina

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

n 2005, hurricane Katrina resulted in a large disturbance to U.S. forests. Recent estimates of damage from hurricane Katrina have relied primarily on optical remote sensing and field data. This paper is the first large-scale study to use satellite-based lidar data to quantify changes in forest structure from that event. GLAS data for the years prior to and following hurricane Katrina were compared to wind speed, forest cover, and damage data to assess the adequacy of sensor sampling, and to estimate changes in Mean Canopy Height (MCH) over all areas that experienced tropical force winds and greater. Statistically significant decreases in MCH post-Katrina were found to increase with wind intensity: Tropical Storm ∆MCH = − 0.5 m, Category 1 ∆MCH = − 2 m, and Category 2 ∆MCH = − 4 m. A strong relationship was also found between changes in non-photosynthetic vegetation (∆NPV), a metric previously shown to be related to storm damage, and post-storm MCH. The season of data acquisition was shown to influence calculations of MCH and MCH loss, but did not preclude the detection of major large-scale patterns of damage. Results from this study show promise for using space-borne lidar for large-scale assessments of forest disturbance, and highlight the need for future data on vegetation structure from space.