Published in

Nature Research, Nature Structural and Molecular Biology, 7(17), p. 781-787, 2010

DOI: 10.1038/nsmb.1863

Links

Tools

Export citation

Search in Google Scholar

Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

RIG-I is a cytosolic helicase that senses 5’-ppp-RNA contained in negative strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies establish that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5’-ppp-RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD domain bound to both blunt-ends of a self-complementary 5’-ppp-dsRNA 12-mer, with interactions involving 5’-pp clearly visible in the complex. The structure, supported by mutation studies, defines how a lysine-rich basic cleft within the RIG-I CTD domain sequesters the observable 5’-pp of the bound RNA, with a stacked Phe capping the terminal base pair. Key intermolecular interactions observed in the crystalline state are retained in the complex of 5’-ppp-dsRNA 24-mer and full-length RIG-I under in vivo conditions, as evaluated from the impact of binding pocket RIG-I mutations and 2’-OCH3 RNA modifications on the interferon response.