Published in

Wiley, Statistics in Medicine, 4(33), p. 580-594, 2013

DOI: 10.1002/sim.5956

Links

Tools

Export citation

Search in Google Scholar

A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time

Journal article published in 2013 by Sheng Luo ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Impairment caused by Parkinson’s disease (PD) is multidimensional (e.g., sensoria, functions, and cognition) and progressive. Its multidimensional nature precludes a single outcome to measure disease progression. Clinical trials of PD use multiple categorical and continuous longitudinal outcomes to assess the treatment effects on overall improvement. A terminal event such as death or dropout can stop the follow-up process. Moreover, the time to the terminal event may be dependent on the multivariate longitudinal measurements. In this article, we consider a joint random-effects model for the correlated outcomes. A multilevel item response theory model is used for the multivariate longitudinal outcomes and a parametric accelerated failure time model is used for the failure time because of the violation of proportional hazard assumption. These two models are linked via random effects. The Bayesian inference via MCMC is implemented in ‘ BUGS’ language. Our proposed method is evaluated by a simulation study and is applied to DATATOP study, a motivating clinical trial to determine if deprenyl slows the progression of PD.