Published in

Biophysical Society, Biophysical Journal, 1(68), p. 281-290

DOI: 10.1016/s0006-3495(95)80186-4



Export citation

Search in Google Scholar

Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Fluorescence emission and triplet-minus-singlet (T-S) absorption difference spectra of the CP47 core antenna complex of photosystem II were measured as a function of temperature and compared to those of chlorophyll a in Triton X-100. Two spectral species were found in the chlorophyll T-S spectra of CP47, which may arise from a difference in ligation of the pigments or from an additional hydrogen bond, similar to what has been found for Chl molecules in a variety of solvents. The T-S spectra show that the lowest lying state in CP47 is at approximately 685 nm and gives rise to fluorescence at 690 nm at 4 K. The fluorescence quantum yield is 0.11 +/- 0.03 at 4 K, the chlorophyll triplet yield is 0.16 +/- 0.03. Carotenoid triplets are formed efficiently at 4 K through triplet transfer from chlorophyll with a yield of 0.15 +/- 0.02. The major decay channel of the lowest excited state in CP47 is internal conversion, with a quantum yield of about 0.58. Increase of the temperature results in a broadening and blue shift of the spectra due to the equilibration of the excitation over the antenna pigments. Upon increasing the temperature, a decrease of the fluorescence and triplet yields is observed to, at 270 K, a value of about 55% of the low temperature value. This decrease is significantly larger than of chlorophyll a in Triton X-100. Although the coupling to low-frequency phonon or vibration modes of the pigments is probably intermediate in CP47, the temperature dependence of the triplet and fluorescence quantum yield can be modeled using the energy gap law in the strong coupling limit of Englman and Jortner (1970. J. Mol. Phys. 18:145-164) for non-radiative decays. This yields for CP47 an average frequency of the promoting/accepting modes of 350 cm-1 with an activation energy of 650 cm-1 for internal conversion and activationless intersystem crossing to the triplet state through a promoting mode with a frequency of 180 cm-1. For chlorophyll a in Triton X-100 the average frequency of the promoting modes for non-radiative decay is very similar, but the activation energy (300 cm-1) is significantly smaller.