Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 4(109), p. 1311-1316, 2012

DOI: 10.1073/pnas.1112204109

Links

Tools

Export citation

Search in Google Scholar

Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity

Journal article published in 2012 by Adam Ranson, Claire E. J. Cheetham, Kevin Fox, Frank Sengpiel ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ocular dominance (OD) plasticity in the visual cortex is a classic model system for understanding developmental plasticity, but the visual cortex also shows plasticity in adulthood. Whether the plasticity mechanisms are similar or different at the two ages is not clear. Several plasticity mechanisms operate during development, including homeostatic plasticity, which acts to maintain the total excitatory drive to a neuron. In agreement with this idea, we found that an often-studied substrain of C57BL/6 mice, C57BL/6JOlaHsd (6JOla), lacks both the homeostatic component of OD plasticity as assessed by intrinsic signal imaging and synaptic scaling of mEPSC amplitudes after a short period of dark exposure during the critical period, whereas another substrain, C57BL/6J (6J), exhibits both plasticity processes. However, in adult mice, OD plasticity was identical in the 6JOla and 6J substrains, suggesting that adult plasticity occurs by a different mechanism. Consistent with this interpretation, adult OD plasticity was normal in TNFα knockout mice, which are known to lack juvenile synaptic scaling and the homeostatic component of OD plasticity, but was absent in adult α-calcium/calmodulin-dependent protein kinase II;T286A (αCaMKII T286A ) mice, which have a point mutation that prevents autophosphorylation of αCaMKII. We conclude that increased responsiveness to open-eye stimulation after monocular deprivation during the critical period is a homeostatic process that depends mechanistically on synaptic scaling during the critical period, whereas in adult mice it is mediated by a different mechanism that requires αCaMKII autophosphorylation. Thus, our study reveals a transition between homeostatic and long-term potentiation–like plasticity mechanisms with increasing age.