Published in

Public Library of Science, PLoS ONE, 2(10), p. e0117506, 2015

DOI: 10.1371/journal.pone.0117506

Links

Tools

Export citation

Search in Google Scholar

Integrated Analysis of Residue Coevolution and Protein Structures Capture Key Protein Sectors in HIV-1 Proteins

Journal article published in 2015 by Yuqi Zhao, Yanjie Wang, Yuedong Gao, Gonghua Li ORCID, Jingfei Huang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

HIV type 1 (HIV-1) is characterized by its rapid genetic evolution, leading to challenges in anti-HIV therapy. However, the sequence variations in HIV-1 proteins are not randomly distributed due to a combination of functional constraints and genetic drift. In this study, we examined patterns of sequence variability for evidence of linked sequence changes (termed as coevolution or covariation) in 15 HIV-1 proteins. It shows that the percentage of charged residues in the coevolving residues is significantly higher than that in all the HIV-1 proteins. Most of the coevolving residues are spatially proximal in the protein structures and tend to form relatively compact and independent units in the tertiary structures, termed as “protein sectors”. These protein sectors are closely associated with anti-HIV drug resistance, T cell epitopes, and antibody binding sites. Finally, we explored candidate peptide inhibitors based on the protein sectors. Our results can establish an association between the coevolving residues and molecular functions of HIV-1 proteins, and then provide us with valuable knowledge of pathology of HIV-1 and therapeutics development.