Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Research Notes, 1(5), 2012

DOI: 10.1186/1756-0500-5-80

Links

Tools

Export citation

Search in Google Scholar

A cost-effective and universal strategy for complete prokaryotic genomic sequencing proposed by computer simulation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Pyrosequencing techniques allow scientists to perform prokaryotic genome sequencing to achieve the draft genomic sequences within a few days. However, the assemblies with shotgun sequencing are usually composed of hundreds of contigs. A further multiplex PCR procedure is needed to fill all the gaps and link contigs into complete chromosomal sequence, which is the basis for prokaryotic comparative genomic studies. In this article, we study various pyrosequencing strategies by simulated assembling from 100 prokaryotic genomes. Findings Simulation study shows that a single end 454 Jr. run combined with a paired end 454 Jr. run (8 kb library) can produce: 1) ~90% of 100 assemblies with < 10 scaffolds and ~95% of 100 assemblies with < 150 contigs; 2) average contig N50 size is over 331 kb; 3) average single base accuracy is > 99.99%; 4) average false gene duplication rate is < 0.7%; 5) average false gene loss rate is < 0.4%. Conclusions A single end 454 Jr. run combined with a paired end 454 Jr. run (8 kb library) is a cost-effective way for prokaryotic whole genome sequencing. This strategy provides solution to produce high quality draft assemblies for most of prokaryotic organisms within days. Due to the small number of assembled scaffolds, the following multiplex PCR procedure (for gap filling) would be easy. As a result, large scale prokaryotic whole genome sequencing projects may be finished within weeks.