Published in

International Union of Crystallography, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 6(64), p. 537-540, 2008

DOI: 10.1107/s1744309108013997

Links

Tools

Export citation

Search in Google Scholar

Preliminary neutron crystallographic analysis of selectively CH3-protonated deuterated rubredoxin fromPyrococcus furiosus

Journal article published in 2008 by K. L. Weiss, F. Meilleur ORCID, M. P. Blakeley, D. A. A. Myles
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Neutron crystallography is used to locate H atoms in biological materials and can distinguish between negatively scattering hydrogen-substituted and positively scattering deuterium-substituted positions in isomorphous neutron structures. Recently, Hauptman & Langs (2003; Acta Cryst. A59, 250-254) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering H atoms in the structure. Selective-labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of H to D atoms can be precisely controlled. Methyl selective-labeling protocols were applied to introduce (1H-delta methyl)-leucine and (1H-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here, the production, crystallization and preliminary neutron analysis of a selectively CH3-protonated deuterated PfRd sample, which provided a high-quality neutron data set that extended to 1.75 A resolution using the new LADI-III instrument at the Institut Laue-Langevin, are reported. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of H atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.