Published in

Wiley, British Journal of Pharmacology, 1(138), p. 91-98, 2003

DOI: 10.1038/sj.bjp.0705005

Links

Tools

Export citation

Search in Google Scholar

Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The pharmacological profiles of presynaptic nociceptin/orphanin FQ (N/OFQ) peptide receptors (NOP) modulating 5-hydroxytryptamine (5-HT) and noradrenaline (NE) release in the rat neocortex were characterized in a preparation of superfused synaptosomes challenged with 10 mM KCl.N/OFQ concentration-dependently inhibited K+-evoked [3H]-5-HT and [3H]-NE overflow with similar potency (pEC50 ∼7.9 and ∼7.7, respectively) and efficacy (maximal inhibition ∼40%).N/OFQ (0.1 μM) inhibition of [3H]-5-HT and [3H]-NE overflow was antagonized by selective NOP receptor antagonists of peptide ([Nphe1]N/OFQ(1-13)NH2 and UFP-101; 10 and 1 μM, respectively) and non-peptide (J-113397 and JTC-801; both 0.1 μM) nature. Antagonists were routinely applied 3 min before N/OFQ. However, a 21 min pre-application time was necessary for J-113397 and JTC-801 to prevent N/OFQ inhibition of [3H]-NE overflow.The NOP receptor ligand [Phe1ψ(CH2-NH)Gly2]N/OFQ(1-13)NH2 ([F/G]N/OFQ(1-13)NH2; 3 μM) did not affect K+-evoked [3H]-NE but inhibited K+-evoked [3H]-5-HT overflow in a UFP-101 sensitive manner. [F/G]N/OFQ(1-13)NH2 antagonized N/OFQ actions on both neurotransmitters.The time-dependency of JTC-801 action was studied in CHO cells expressing human NOP receptors. N/OFQ inhibited forskolin-stimulated cAMP accumulation and JTC-801, tested at different concentrations (0.1–10 μM) and pre-incubation times (0, 40 and 90 min), antagonized this effect in a time-dependent manner. The Schild-type analysis excluded a competitive type of antagonism.We conclude that presynaptic NO receptors inhibiting 5-HT and NE release in the rat neocortex have similar pharmacological profiles. Nevertheless, they can be differentiated pharmacologically on the basis of responsiveness to [F/G]N/OFQ(1-13)NH2 and time-dependent sensitivity towards non-peptide antagonists.