Published in

The Korean Nutrition Society, Nutrition Research and Practice, 4(6), p. 322, 2012

DOI: 10.4162/nrp.2012.6.4.322

Links

Tools

Export citation

Search in Google Scholar

Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet

Journal article published in 2012 by Ji Heon Park, Sun Hee Lee, Ill-Min Chung, Yongsoon Park ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

This study investigated the hypothesis that a sorghum extract exerts anti-diabetic effects through a mechanism that improves insulin sensitivity via peroxisome proliferator-activated receptor gamma (PPAR-γ) from adipose tissue. Seven C57BL/6 mice were fed an AIN-93M diet with fat consisting of 10% of total energy intake (LF) for 14 weeks, and 21 mice were fed a high-fat AIN diet with 60% of calories derived from fat (HF). From week 8, the HF diet-fed mice were orally administered either saline (HF group), 0.5% (0.5% SE group), or 1% sorghum extract (1% SE group) for 6 weeks (n = 7/group). Perirenal fat content was significantly lower in the 0.5% SE and 1% SE groups than that in the HF mice. Levels of total and low-density lipoprotein cholesterol, triglycerides, glucose, and the area under the curve for glucose were significantly lower in mice administered 0.5% SE and 1% SE than those in HF mice. Serum insulin level was significantly lower in mice administered 1% SE than that in HF mice or those given 0.5% SE. PPAR-γ expression was significantly higher, whereas the expression of tumor necrosis factor-α was significantly lower in mice given 1% SE compared to those in the HF mice. Adiponectin expression was also significantly higher in mice given 0.5% SE and 1% SE than that in the HF mice. These results suggest that the hypoglycemic effect of SE may be related with the regulation of PPAR-γ-mediated metabolism in this mouse model.