Published in

Wiley Open Access, Journal of Clinical Laboratory Analysis, 3(22), p. 192-203, 2008

DOI: 10.1002/jcla.20240

Links

Tools

Export citation

Search in Google Scholar

SNP Analysis Using CataCleave Probes

Journal article published in 2008 by John J. Harvey, Steven R. Brant, Jay R. Knutson, Myun K. Han
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

CataCleave” probes are catalytically cleavable fluorescence probes having a chimeric deoxyribonucleic acid (DNA)-ribonucleic acid (RNA)-DNA structure that can be used for real-time detection of single nucleotide polymorphisms (SNPs), insertions, and deletions. Fluorescent donor emission is normally quenched by Förster resonance energy transfer (FRET). Upon binding to the target, if the RNA/DNA hybrid is correctly base-paired, ribonuclease (RNase) H will cleave the RNA moiety and the probe fragments will dissociate. FRET is lost and the donor fluorescence signal is recovered. A single-base mismatch within the hybrid region causes probe cleavage to be significantly reduced. We designed CataCleave probes to detect SNPs located in the insulin-like growth factor 2 (IGF-2) gene and at position 702 within the NOD2/CARD15 gene. Probes were also designed to detect a six-basepair deletion in the amelogenin gene and a partially methylated target DNA. Discrimination between wild-type and SNP is demonstrated for both genes in homogeneous reactions under isothermal and temperature cycling conditions. These probes were also able to identify a multibase deletion and methylated DNA. Cleavage rates were proportional to target concentration. Probe length and position of fluorescent labels may also be modified for use in multiplexing high-throughput SNP assays. This represents a novel method for the detection of SNPs.