Dissemin is shutting down on January 1st, 2025

Published in

American Society of Hematology, Blood, 10(127), p. 1317-1324, 2016

DOI: 10.1182/blood-2015-11-679571

Links

Tools

Export citation

Search in Google Scholar

Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms (MPNs) we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After six months, CALRdel52-, in contrast to rare CALRins5-transduced mice, developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of JAK2 and STAT5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo ligand contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation.