Published in

SAGE Publications, International Journal of High Performance Computing Applications, 4(29), p. 506-510, 2015

DOI: 10.1177/1094342015585846

Links

Tools

Export citation

Search in Google Scholar

Large-scale genome-wide association studies on a GPU cluster using a CUDA-accelerated PGAS programming model

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Detecting epistasis, such as 2-SNP interactions, in genome-wide association studies (GWAS) is an important but time consuming operation. Consequently, GPUs have already been used to accelerate these studies, reducing the runtime for moderately-sized datasets to less than 1 hour. However, single-GPU approaches cannot perform large-scale GWAS in reasonable time. In this work we present multiEpistSearch, a tool to detect epistasis that works on GPU clusters. While CUDA is used for parallelization within each GPU, the workload distribution among GPUs is performed with Unified Parallel C+ + (UPC+ +), a novel extension of C+ + that follows the Partitioned Global Address Space (PGAS) model. multiEpistSearch is able to analyze large-scale datasets with 5 million SNPs from 10,000 individuals in less than 3 hours using 24 NVIDIA GTX Titans.