Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, European Journal of Medicinal Chemistry, (50), p. 311-318

DOI: 10.1016/j.ejmech.2012.02.010

Links

Tools

Export citation

Search in Google Scholar

Novel Triacsin C Analogs as Potential Antivirals against Rotavirus Infections

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently our group has demonstrated that cellular triglycerides (TG) levels play an important role in rotavirus replication. In this study, we further examined the roles of the key enzymes for TG synthesis (lipogenesis) in the replication of rotaviruses by using inhibitors of fatty acid synthase, long chain fatty acid acyl-CoA synthetase (ACSL), and diacylglycerol acyltransferase and acyl-CoA:cholesterol acyltransferase in association with lipid droplets of which TG is a major component. Triacsin C, a natural ACSL inhibitor from Streptomyces aureofaciens, was found to be highly effective against rotavirus replication. Thus, novel triacsin C analogs were synthesized and evaluated for their efficacies against the replication of rotaviruses in cells. Many of the analogs significantly reduced rotavirus replication, and one analog (1e) was highly effective at a nanomolar concentration range (ED 50 0.1 μM) with a high therapeutic index in cell culture. Our results suggest a crucial role of lipid metabolism in rotavirus replication, and triacsin C and/or its analogs as potential therapeutic options for rotavirus infections.