Published in

Society for Neuroscience, Journal of Neuroscience, 24(32), p. 8192-8200, 2012

DOI: 10.1523/jneurosci.0934-12.2012

Links

Tools

Export citation

Search in Google Scholar

Priming of control: implicit contextual cuing of top-down attentional set

Journal article published in 2012 by Joseph A. King ORCID, Franziska M. Korb ORCID, Tobias Egner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Cognitive models have long distinguished between “automatic” associative processes that can be triggered in a bottom-up fashion, and “controlled” processes, where internal goals guide information processing in a deliberate, top-down manner. However, recent behavioral studies have cast doubt on the validity of this dichotomy, showing that implicit contextual cues can modulate performance in a way suggestive of an associative triggering of specific top-down control states. Here, we harnessed functional magnetic resonance imaging (fMRI) in humans to test whether these behavioral findings truly reflect online, bottom-up priming of top-down attentional control settings. Using a flanker interference task where stimulus location cued the likelihood of incongruent trials, we found that the behavioral phenomenon of implicit, context-specific improvements in interference resolution was mirrored in hemodynamic activity in the medial superior parietal lobule (mSPL), previously implicated in voluntary (as opposed to primed) attention shifts. Moreover, the mSPL displayed context-specific functional coupling with visual regions involved in processing the flanker stimuli, and the modulation of the latter was predictive of the behavioral effects. Finally, the implementation of this contextual control was “on the fly”, that is, it was primed online by a switch to the context associated with high conflict. These results suggest that top-down control states can be bound into episodic event representations and can subsequently be primed by other features of those representations. Together, our findings illustrate a more intimate link between associative and controlled processing than is traditionally assumed, and place the neural substrate of that linkage in the posterior parietal cortex.